Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475112

RESUMO

Optical 3D scanning applications are increasingly used in various medical fields. Setups involving multiple adjustable systems require repeated extrinsic calibration between patients. Existing calibration solutions are either not applicable to the medical field or require a time-consuming process with multiple captures and target poses. Here, we present an application with a 3D checkerboard (3Dcb) for extrinsic calibration with a single capture. The 3Dcb application can register captures with a reference to validate measurement quality. Furthermore, it can register captures from camera pairs for point-cloud stitching of static and dynamic scenes. Registering static captures from TIDA-00254 to its reference from a Photoneo MotionCam-3D resulted in an error (root mean square error ± standard deviation) of 0.02 mm ± 2.9 mm. Registering a pair of Photoneo MotionCam-3D cameras for dynamic captures resulted in an error of 2.2 mm ± 1.4 mm. These results show that our 3Dcb implementation provides registration for static and dynamic captures that is sufficiently accurate for clinical use. The implementation is also robust and can be used with cameras with comparatively low accuracy. In addition, we provide an extended overview of extrinsic calibration approaches and the application's code for completeness and service to fellow researchers.

2.
Sensors (Basel) ; 23(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765865

RESUMO

Adolescent idiopathic scoliosis (AIS) is a prevalent musculoskeletal disorder that causes abnormal spinal deformities. The early screening of children and adolescents is crucial to identify and prevent the further progression of AIS. In clinical examinations, scoliometers are often used to noninvasively estimate the primary Cobb angle, and optical 3D scanning systems have also emerged as alternative noninvasive approaches for this purpose. The recent advances in low-cost 3D scanners have led to their use in several studies to estimate the primary Cobb angle or even internal spinal alignment. However, none of these studies demonstrate whether such a low-cost scanner satisfies the minimal requirements for capturing the relevant deformities of the human back. To practically quantify the minimal required spatial resolution and camera resolution to capture the geometry and shape of the deformities of the human back, we used multiple 3D scanning methodologies and systems. The results from an evaluation of 30 captures of AIS patients and 76 captures of healthy subjects showed that the minimal required spatial resolution is between 2 mm and 5 mm, depending on the chosen error tolerance. Therefore, a minimal camera resolution of 640 × 480 pixels is recommended for use in future studies.


Assuntos
Doenças Musculoesqueléticas , Dispositivos Ópticos , Adolescente , Criança , Humanos , Voluntários Saudáveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...